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SUMMARY

In order to understand the hydrodynamic interactions that can appear in a fluid particle motion, an
original method based on the equations governing the motion of two immiscible fluids has been
developed. These momentum equations are solved for both the fluid and solid phases. The solid phase
is assumed to be a fluid phase with physical properties, such as its behaviour can be assimilated to that
of pseudo-rigid particles. The only unknowns are the velocity and the pressure defined in both phases.
The unsteady two-dimensional momentum equations are solved by using a staggered finite volume
formulation and a projection method. The transport of each particle is solved by using a second-order
explicit scheme. The physical model and the numerical method are presented, and the method is validated
through experimental measurements and numerical results concerning the flow around a circular cylinder.
Good agreement is observed in most cases. The method is then applied to study the trajectory of one
settling particle initially off-centred between two parallel walls and the corresponding wake effects.
Different particle trajectories related to particulate Reynolds numbers are presented and commented. A
two-body interaction problem is investigated too. This method allows the simulation of the transport of
particles in a dilute suspension in reasonable time. One of the important features of this method is the
computational cost that scales linearly with the number of particles. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The motion of solid particles dispersed in a fluid phase is encountered in an increasing number
of industrial processes. It is found, for instance, in petroleum extraction, coal, filtration and
solid rocket propellant manufacturing. The challenge is to model such motions. In order to
close the averaged equations of the global motion in a Euler–Euler approach or to define the
transfer functions in a Euler–Lagrange approach, some coefficients that quantify the interac-
tions between the two phases [1] must be defined. No matter the approach, local hydrodynamic
interactions, such as particle–fluid, particle–particle and particle–wall interactions, must be
known. In the literature, many empirical relations and data correlations can be found for
coupling or drag coefficients depending on the nature of the motion [2]. This fact points out
that all the hydrodynamic interactions must be known a priori. For simple cases, these
relations are well-adapted and lead to good results. Unfortunately, most industrial processes
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do not verify these classical assumptions: semi-dilute or concentrated suspensions with high
velocities, unsteady and non-uniform flows, walls and singularities, particle size larger than
Kolmogorov scales, . . . In most cases, the flow regime induces irreversible and non-linear
hydrodynamic interactions. As a result, the knowledge of these hydrodynamic interactions and
their importance for all flow configurations are fundamental to improve on the global models
described above. The local phenomena can be predicted by calculating the motion of dispersed
particles in a surrounding fluid with the smallest number of hypotheses. This approach is
called direct simulation. It is a deterministic approach. The forces acting on the surface of the
particles are evaluated directly with no averaging or approximation and the flow evolves
according to the motion of these particles. The same can be said of turbulence phenomena,
where direct simulation allows the development of new turbulence models based on the
knowledge of every flow scale. In the present case, the modelling of the motion of a few
particles (as many as possible) can serve as a guideline for understanding more complicated
systems and can help in quantifying the full hydrodynamic interactions during the motion. In
other words, to understand and describe the macroscopic flow of a suspension, one must take
into account the microscopic properties and the interactions of the microstructure.

The development of a direct simulation method is a difficult task. The method should allow
for a large number of moving particles and should be able to cope with the discontinuity
between the two phases so that the local action of the flow on the particles is accurately
predicted. Particle surface can be regarded as a boundary or an interface. Two different
meshing strategies are possible. The first one, normally used with the finite element method,
consists of taking into account the relative position of the particles as a boundary of the fluid
domain. Remeshing is then needed at each time step. Alternatively, one can use a fixed grid
and track the surface of the moving particles over time. This is the approach often encountered
with the finite volume or the finite difference method.

Concerning the use of moving grids, Hu et al. [3,4] derived a method based on the
Navier–Stokes equations for the fluid and Newton’s equations for the solid particles. They can
predict the respective motion of two two-dimensional particles including the drafting, kissing
and tumbling (DKT) phenomenon observed by Fortes et al. [5]. The action of the fluid on the
particles is obtained from experimental curves and empirical formulations [3] or evaluated
explicitly by an integration along the surface of the particles [6,7]. This approach necessitates
a remeshing procedure and the mapping of the flow fields from the old mesh onto the new
mesh. To overcome these difficulties and the inherent computational cost when the number of
particles becomes large or a three-dimensional computational domain is considered, Johnson
and Tezduyar [8,9] have developed an interesting strategy based on the deforming spatial
domain/space–time procedure developed by Tezduyar et al. [10]. The domain is composed of
deformable finite elements. Remeshing becomes necessary when the grid gets too distorted.
With this approach, they can simulate the motion of settling particles in three dimensions and
predict the DKT phenomenon [8]. They were able to simulate as many as 100 particles in the
three-dimensional case [9]. Recently, Glowinski et al. [11] proposed to simulate the motion of
two-dimensional rigid particles in a suspending fluid using a finite element based fictitious
domain method. The interface between the solid and fluid is defined by control points, on each
of which a kinematic condition is imposed using a Lagrange multipler. The motion of these
control points is governed by the action of the fluid on the surface of the particles. The interest
of this method is that it relies on a fixed mesh. No remeshing is needed, which is an interesting
feature especially when the number of particles increases and a large portion of the fluid space
is filled with particles.
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The scope of this paper is to present a new procedure based on a fixed, structured and
uniform grid and the finite volume method. The definition of a continuous hydrodynamic
model that has been adopted here leads to a unique system of equations for both phases. This
approach does not need remeshing and seeks the solution to the problem in a coupled manner.
The remainder of the paper is as follows. First the physical model and the numerical method
are presented in Sections 2 and 3 respectively. The method is then validated by comparing the
numerical results obtained for the flow around a circular cylinder with those found in the
literature. The motion of settling particles in a closed channel is studied in detail to
characterise particle–fluid, particle–wall and particle–particle interactions, and special atten-
tion is given to wake effects in Section 4. Finally, conclusions are drawn in Section 5.

2. GOVERNING EQUATIONS

We consider the incompressible flow of two non-miscible Newtonian fluids separated by a
material interface. One of the fluids is dispersed into the other. Let t� [0, T ] and let D be the
two-dimensional computational domain of boundary (D. In the sequel, Df, rf and mf

respectively represent the domain, the density and the viscosity of the continuous phase, and
Dd, rd and md the domain, the density and the viscosity of the dispersed phase. The interface
between the two fluids is denoted by S and the velocity and the normal unit vector are
respectively denoted by Vi and ni (see Figure 1).

The incompressible momentum equations for the two non-miscible fluids in D are formu-
lated in terms of velocity V(x, t) and pressure p(x, t), where x is the position vector,
x=x i+y j in a Cartesian co-ordinate system, where i and j are the unit vectors parallel to the
co-ordinate axes:

Mass conservation:

d
dt
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where [[ · ]] denotes the jump at the interface S; s̄̄ is the Cauchy tensor. In the case of a contact
surface between the two immiscible fluids without surface tension, the jump conditions are as
follows:

Figure 1. Definition of the domain that contains a surface of discontinuity S.
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[[V]] ·ni=0. (3)

[[s̄̄ ]] ·ni=0. (4)

These respectively imply the continuity of the normal velocity and the stress vector through the
interface. The equations defined above allow the simulation of the motion of two immiscible
fluids. The idea now is to modify the constitutive law of the dispersed phase to describe a
pseudo-rigid behaviour.

2.1. Specific constituti6e law for the dispersed phase

To define the constitutive law of the dispersed phase, we assume that the solid phase Dd is
a fluid phase with a very high viscosity and look for a constitutive law that is similar to that
of a pseudo-rigid non-elastic particle.

Let us look in more detail at the momentum equations when the viscosity of the dispersed
phase Dd is very high compared with that of the continuous phase Df. First, let us consider the
stress tensor in the dispersed phase. This term is well-defined and has a finite dimension. It
represents the continuity of the stress field at the interface of a particle. As a Newtonian law
is used over the whole domain, we write:

t̄̄=md(9V+9Vt). (5)

If now the viscosity md increases very strongly, then the rate-of-strain tensor term tends to zero
in the particle, which presents a way to characterise the pseudo-rigid region Dd. The velocity
for this phase, VM is then composed of two velocities, a translational velocity defined as the
velocity of the centre of gravity G of the particle and the velocity due to the rotational velocity
VG : VM=VG+MG�VG, where M is a point included in the region Dd. By tracking the
regions of the domain where the rate-of-strain tensor tends to zero, we then obtain a
characterisation of the motion of the particles. Two conditions are to be respected in D, let
alone that of incompressibility:

9 ·V=0 in Df, (6)

and that of indeformability, which guarantees that the particle motion is rigid:

Dij�0 in Dd. (7)

It is important to stress that this model is valid only if the continuity of the stress tensor is
satisfied at the interface. For instance, if the rate-of-strain tensor is equal to zero, we do not
have the continuity across the interface of the stress vector. Consequently, to ensure that the
dispersed phase is pseudo-rigid, it is assumed that:

tc(D(( )� tc
�dp

Vp

�
, (8)

i.e. it is assumed that the characteristic time representing the deformation of the particle will
be larger than the flow characteristic time.

With this formulation, no kinematic condition is needed at the fluid–solid interface. The
continuity of the normal velocity and the stress tensor at the interface is implicitly satisfied. It
is interesting to note that the numerical discretisation ensures the continuity of the tangential
velocity too. There is no possibility to allow for slip condition at the interface.

It is straightforward to extend the methodology to the case of many particles. In this case,
Ddi

, (Ddi
and Vdi

respectively denote the domain, the boundary and the volume of the ith
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Figure 2. A staggered mesh in two dimensions.

dispersed particle. The position of the ith particle is determined by the position of its centre
ri(xi, t) (with ri=xi i+yi i) and its rotational angle ui(t). Its motion is determined by the
velocity Vi(xi, t) and the angular velocity Vi(ui, t). The velocity of the particle centre of gravity
is evaluated by integrating the velocity field defined for the dispersed phase. The angular
velocity is evaluated by integrating the vorticity field for the dispersed phase. Finally, the
following model is obtained:&&&
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3. NUMERICAL METHODS

3.1. Spatial discretisation

The equations above are discretised using the finite volume method. To transform the
differential equations into algebraic equations, the conservation equations are integrated over
finite volumes DV=DxDy in a fixed co-ordinate system. A staggered grid based version of the
MAC method developed by Harlow and Welch [12] was used for the discretisation of the
velocity and pressure. As sketched in Figure 2, the normal velocity components are staggered
relative to the location of the pressure variables, so that the cells are centred on the pressure
nodes and the velocities are located on the cell faces.
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3.2. Numerical treatment of the discontinuities

In the present approach, we consider that the discontinuity at the interface of physical
quantities, such as the viscosity and the density, corresponds to a continuous function with a
very steep slope. This simplistic assumption leads to an approximation of the problem that is
fairly accurate and easy to implement. With this model, the volume fraction is defined as:

Fij=0 in Df,
Fij=1 in Dd,

(9)

and 0BFijB1 in the hybrid cell containing the discontinuities. The value of the volume
fraction depends on the position of the discontinuity. The evaluation of the volume fraction
allows the calculation of the values of the density and the viscosity in the whole domain by a
volume averaging technique. For the density, we write:

rij=rd(1−Fij)+rfFij, (10)

which is linear when arithmetic interpolation is used.
For the treatment of the viscosity, another strategy is proposed because the viscosity of the

dispersed phase is so large with respect to that of continuous phase that a simple averaging
technique would yield this viscosity whatever the value of the volume fraction.

mij=md(1−Fij)+mfFij#md. (11)

In place, we suggest the use of another averaging technique based on the conservation of the
viscous flux through the interface with respect to its position in the cell.

More precisely, we define in the cell containing the discontinuity some equivalent physical
properties that ensure two conditions. First, the local conservation of the flux through the cell
faces and then, the conservation of the flux through the interface, which is included in the cell
(Figure 3). This averaging technique can be easily extended to the two-dimensional case. The
grid nodes for the viscosity field are defined at the corner of the scalar control volume (Figure
2).

mij=
mdmf

(1−Fij)md+Fijmf

. (12)

The underlying momentum equations can be solved with the method used for the solution of
single phase fluid flow problems. For each phase, the physical quantities are constant during
a time step. The only unknowns are the velocity and the pressure.

Figure 3. Simple shear at the vicinity of the solid–fluid interface.
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3.3. Solution method

The solution of the momentum equations is carried out using a variant of the time splitting
method of Goda [13], based on the method of Chorin [14]. The time splitting method is a
method based on the decomposition of Navier–Stokes operators. First, the Navier–Stokes
equations are solved to find an intermediate velocity field V0 , which does not satisfy the
incompressibility condition:

Í
Ã

Ã

Á

Ä

rn�V0 −Vn

Dt
+ (Vn ·9)V0 �= −9pn+9 · [mn(9V0 +9V0 t)]+ (rn−r f
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(13)

This velocity field is then projected onto a divergence-free subspace:
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This projection step implies the solution of a Poisson equation applied to the pressure
variation. The pressure field is zero at the initial time step.
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(15)

The following discretisation schemes are used: a third-order QUICK scheme [15] for the
treatment of the convective terms, a second-order central difference scheme for the diffusive
terms, and a second-order implicit Gear scheme for the transient terms [16]. In classical
projection methods, the first step is solved explicitly [13]. In this work, implicit solution is
preferred because such a scheme is unconditionally stable and does not necessitate a time step
restrictive condition. With an explicit scheme, the large values of the viscosity in the dispersed
phase would call for too small time steps to ensure its convergence. An implicit method is also
employed for the solution of the Poisson equation. The two non-symmetric linear systems (13)
and (15) are solved efficiently using the BiCGSTAB method proposed by Van der Vorst [17]
with a Jacobi preconditioner. The transport of the particles in the fluid phase is handled with
a second-order time scheme, where Vn+1 and Vn denote the velocities of the particle’s centre
of gravity obtained from the momentum equations in the solid phase at the time step (n) and
(n+1).

Dri
n+1

Dt
=

1
2

(Vn+Vn+1). (16)
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Figure 4. Typical particle motion between two parallel walls in Stokes flow: streamlines (a), (b) and (c); and isobars
(d), (e) and (f) for different particle diameters.

A condition on the size of the time step is given by the following Courant–Friedrich–Lewy
(CFL) number, where (u, 6) represent the velocity at the interface:

CFL=max
(x)

:�u �
Dx
Dt

,
�6 �
Dy
Dt

;
. (17)

This condition is needed because of the use of an explicit scheme to transport particles. In this
work, a CFL number always less than 0.5 led to correct and smooth transport velocities in
every case.

4. NUMERICAL RESULTS

4.1. Validation

In order to validate the present method, the Stokes flow around a circular cylinder between
two parallel walls was considered. This problem has been studied both experimentally and
theoretically by Bouard and Coutanceau [18]. Here, special attention is given to the product of
the Cd number and the Reynolds number and its relationship with the particle diameter to
channel width ratio.

In this study, the following dimensionless numbers are defined:

Reynolds number: Re=
rfUpdp

mf

, (18)

Cd number: Cd=
fx

1
2 rfUp

2dp

, (19)

Dimensionless diameter: k=
dp

L
, (20)
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Figure 5. Velocity in front of the cylinder: theoretical and numerical approaches.

where Up, dp and L respectively stand for the velocity, the particle diameter and the channel
width. In Figure 4, the motion of a particle dragged horizontally with a constant velocity by
a body force fx is presented. The motion is steady. In Figure 4(a)–(c), the streamlines around
the particle are displayed. The number of nodes is of the order of 104. One can readily see that
the flow is symmetric between the front and the back, and that the particle stays along the
middle axis. In the particle itself, the streamlines are parallel, pointing to the fact that it is
pseudo-rigid and moves as a solid. In Figure 4(d)–(f), the pressure field is represented. The
pressure is defined over the whole domain including the intern of particle. It is continuous at
the interface and its maximum value is reached at the stagnation point. In order to compare
our results with the theoretical results of Bouard and Coutanceau [18], we have transformed
our results so that they are compliant with a Lagrangian frame of reference, that of a fixed
particle and moving walls. In Figure 5, a graph representing the variation of the fluid velocity
upstream of the particle, along a horizontal line, is presented. As can be readily noted, a good
accuracy is obtained everywhere along this line. Bouard [19] has also developed an experimental

Table I. CdRe vs. k

k CdRe

0.25 44This study
0.5 197
0.75 1710

0.25 43.95Bouard et al. [18]
0.5 198.9(theoretical approach)

17210.75

0.25 44Bouard [19]
0.5 196(experimental approach)
0.75 1200

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1067–1090 (1999)
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Figure 6. Evolution of the error vs. mesh size h.

approach that can be used to measure the force acting on a moving particle and where the
fluid velocity is measured by the so-called particle tracking velocity technique [19]. In Table I,
the number CdRe is given for three different particle radii. A good agreement is obtained
between the three different approaches. However, when k increases, the experimental error
increases strongly [19] and the results of Bouard diverge from those predicted in theory and
with our numerical approach. Next, a graph of the velocity L� error with respect to the cell
size is presented in Figure 6. What we are looking for is the order of the method, i.e. the value
of a in


Vexact−Vnum
�5Cha, (21)

where h, the cell size, varies as the inverse of the number of nodes. The norm �� · ��� is defined
as:


Vexact−Vnum
�=sup
i

�Vi
exact−Vi

num�, (22)

where i stands for the node number. In this work, this error is computed on all nodes upstream
of the particle. As can be seen in Figure 6, the method that is proposed in this work is stable
and at least linear with respect to the L� norm. More precisely, the value a=1.4 was found.

Figure 7. Typical particle motion in an unbounded flow, Re=30: streamlines (a) and isobars (b).
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Table II. Drag coefficient vs. Reynolds number

Re Drag coefficient

1 11.9This study
10 2.72
20 1.99
30 1.69
40 1.51

Bouard [19] 1
10(experimental approach) 2.75
20 2.0
30 1.7
40 1.55

1 10.325Kim et al. [20]
10(numerical approach) 2.720
20 1.967
30
40 1.462

We believe that the loss of approximately half of one order of accuracy is imputable to the loss
of regularity of the solution at the interface (discontinuous momentum).

In order to study the wake effects during the motion, we calculated the Cd coefficient of a
cylinder dragged in an unbounded flow for Reynolds numbers up to 40. Streamlines and

Figure 8. Sedimentation problem.
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Figure 9. Sedimentation of a circular particle, Re=10−5, k=0.25, streamlines, fmin= −1.8×10−8, fmax=1.8×
10−8, Df=1.8×10−9.

isobars are shown in Figure 7(a) and (b). Our results were obtained by using a 20000 node
rectangular grid. Our results were compared with experimental [19] data and other numerical
[20] results. As pointed out in Table II, we observe a good agreement for the drag coefficient.
For Reynolds numbers of the order of 100, the method seems to be sufficiently accurate. At
higher Reynolds numbers, a thin boundary layer appearing in the neighbourhood of the

Figure 10. Trajectory of a circular settling particle between two parallel walls for different values of the Reynolds
number, k=0.25.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1067–1090 (1999)
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Figure 11. Sedimentation of a circular particle Re=110.7; k=0.25; five positions: t=0, 0.5, 1, 1.5, 2 s; streamlines,
fmin= −7×10−5, fmax=7×10−5, Df=8×10−6.

surface calls for an increase of the number of nodes in this region. To avoid excessive
computational times, it would be convenient to use an adaptative mesh refinement method.

4.2. Numerical study of sedimentation

In this section, the sedimentation of a particle in water is studied. The particle, which is
embedded in a closed channel (Figure 8), is assumed to be initially at rest. The Reynolds
number that defines the flow conditions is based on the final settling velocity and the diameter
of the particle. Different values of the particle density allows us to modify the flow regime. The
fluid motion must satisfy a non-slip boundary condition on (D :

V�(D=0. (23)

Let us mention that, with such a boundary condition, a homogeneous Neumann boundary
condition for the Poisson equation is fully justified. In a Stokes regime, when a rigid particle

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1067–1090 (1999)
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settles between two parallel walls, the symmetry of the flow (Figure 9) upstream and
downstream of this particle leads to a stable trajectory [21]. The particle does not migrate. The
distance between its centre and one of the parallel walls remains constant. In an inertia regime,
the situation is more complex as pointed out in Figure 10, where the trajectory of the settling
particle is displayed for different values of the Reynolds number. Following Feng et al. [6] we
can observe four different regimes of sedimentation.

� In Stokes flow, the particle does not migrate laterally.
� When the inertia starts playing a role, the velocity and pressure profiles on the surface of

the particle become non-symmetric, thereby inducing a transversal force [22,23]. The
particle thus migrates towards the walls, and then reaches a stable equilibrium position
midway between the two walls.

Figure 12. Sedimentation of a circular particle Re=110.7; k=0.25; five positions: t=0, 0.5, 1, 1.5, 2 s; isobars,
pmin= −2, pmax=1.5, Dp=0.35.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1067–1090 (1999)
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Figure 13. Sedimentation of a circular particle Re=110.7; k=0.25; five positions: t=0, 0.5, 1, 1.5, 2 s, vorticity and
angular of particle rotation, wmin= −320, wmax=28, Dw=37.5.

� At Re:1, the formation of a non-symmetric recirculation zone modifies the transverse
force so that the particle no longer converges directly to the centre of the domain. Instead,
the trajectory oscillates and these oscillations decrease in size as the particle approaches the
centre of the canal. The final lateral position is closed to the centre.

� At high values of the Reynolds number, i.e. in the transition regime, the motion becomes
inherently unsteady. Even if the velocity tends to a constant value, the recirculation region
behind the particle cannot be symmetric and the trajectory of the particle is, therefore,
unstable. A zigzagging motion is generated by the oscillating wake behind the particle.

For the sake of illustration, additional results are now presented for Re=110.7. As can be
readily seen in Figures 11–13, the wake is unsteady and the action of the flow on the particle
perturbs its motion. The particle is moving away from the wall. It is rotating clockwise as if
it was rolling up the wall. This phenomenon is called anomalous rolling effect and has been

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1067–1090 (1999)
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described by Liu et al. [24]. The trajectory fluctuates appreciably. A series of contra-rotating
vortices, the size of which is roughly equal to the distance between the two walls, are shed
behind the particle which is settling. When the width of the channel is increased, the
recirculation grows up as can be seen in Figure 14. At the limit, with no walls, the dissipation
of vortices lead to the famous Van Karman vortex shedding.

Finally, we discuss the motion of two settling cylinders between two parallel walls. The
cylinders are launched one behind the other and initially the distance between the centres is
four diameters. The cylinder that is behind the other one is slightly off-centred to avoid the
symmetric non-stable solution. The scenario that appears in such a configuration is called

Figure 14. Sedimentation of a circular particle, Re=81.25, k=0.125, t=5 s, streamlines.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1067–1090 (1999)
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Figure 15. Drafting, kissing, tumbling of two particles, Rek=20; k=0.1; six positions: t=0, 0.532, 0.732, 1.21, 1.32,
2.21 s; streamlines, fmin= −1.55×10−5, fmax=1.55×10−5, Df=1.6×10−6.

drafting, kissing, tumbling (DKT) and was first observed experimentally by Fortes et al. [5],
and first simulated by Hu et al. [3] in two dimensions and later by Johnson et al. [8] in three
dimensions. The particle behind is carried by the wake triggered by the first particle (drafting),
its velocity increases, the distance between the two centres decreases, and eventually there is a
contact (kissing). The vertical configuration is unstable and the particles cannot stay one
behind the other [25]. The particles are found side by side (tumbling). When kinetic energy is
sufficient, the particle behind passes the front particle (see Figure 15). Then the front particle
leaves the middle of the channel and is influenced by the fluid that back-flows along the wall.
The particle can then stagnate against the wall. In our flow configuration (kissing Reynolds
number: Rek=20), the two particles settle in a stable side by side position after the tumbling
position. This configuration was experimentally observed [5]. This mechanism plays a domi-
nant role on the redistribution of the microstructure in the settling suspension because two
particles on the same streamlines will be located side by side across streamlines.

4.3. Computational time

It is worthwhile to note that with the proposed method, the computational cost scales
linearly with the number of particles [26]. The computational time for one particle in a periodic
Poiseuille flow is only 3% more than for no particle. This points to the efficiency of the
method. The increase in computational time is imputable only to the calculation of the new
position of the particles. Obviously, it would be beneficial to parallelise this procedure.
Moreover, the fact that no remeshing and no interpolation are requested at each time step
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makes this method a very competitive one. All the computations were performed on Cray
computers (C98 and J916). The CPU time depends on the problem size and varied between 15
min and 10 h. The number of scalar nodes was about 105 for the simulation in Navier–Stokes
regime (note that the computational domain is very long).

As an illustration, this method was used to simulate a two-dimensional sedimentation
problem involving as many as 361 particles [26] (Figures 16–21). The initial configuration is a
symmetric lattice of 361 particles. We first observe a symmetric sedimentation for a long
period of time (Figures 16 and 17). This points out the accuracy of the solver. One must note
that, at this time (Figure 17), the line of particles in the middle and at the bottom of the
geometry is inherently unstable. Consequently, a small perturbation due to numerical trunca-
ture errors may lead to a departure from symmetry in the solution. The redistribution of the
microstructure is governed by DKT mechanisms. It is interesting to note that no collision

Figure 16. Sedimentation of 361 circular particles between two parallel walls, Re=1, k=0.025, t=250 s, streamlines.
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Figure 17. Sedimentation of 361 circular particles between two parallel walls, Re=1, k=0.025, t=800 s, streamlines.

model was considered in this study. In fact, collision does not occur if a suitable time step is
chosen. On the figures, the particles are represented as an isosurface of the volume fraction,
which explain why two particles may appear overlapped. Finally, after the lack of symmetry
has occurred, we observe the sedimentation of particles (Figures 18 and 19) until the deposit
of the suspension (Figures 20 and 21).

5. CONCLUSIONS

To conclude, the model we have developed allows the simulation of the transport of rigid
particles dispersed in a fluid in an efficient and easy manner. The main characteristic of the
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proposed method is to use a very high viscosity to describe the dispersed phase whose
behaviour can be assimilated to that of rigid particles. The method is based on a finite
volume method, a projection method to solve the momentum equations, a preconditionned
bi-conjugated gradient method (BiCGSTAB) to solve the linear systems and an explicit
transport of the interfaces between the two phases. The interest of this method is that it
needs no remeshing and interpolation of data over the course of a simulation. This leads to
a competitive computational cost that scales linearly with the number of particles. More-
over, the properties of the dispersed phases can be defined in a simple manner, which
makes it possible to study poly-dispersed phase suspension flows. Presently, the maximum
numbers of particles is of the order of 1000 for a two-dimensional problem. The aim of

Figure 18. Sedimentation of 361 circular particles between two parallel walls, Re=1, k=0.025, t=950 s, streamlines.
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Figure 19. Sedimentation of 361 circular particles between two parallel walls, Re=1, k=0.025, t=1050 s, stream-
lines.

this direct simulation strategy is to go from a local scale (that of the particles) to a global
scale (that of the suspension), and thus be able to access to macroscopic values which can
take into account the distorted microstructure governed by the hydrodynamic interactions.
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Figure 20. Sedimentation of 361 circular particles between two parallel Re=1, k=0.025, t=1300 s, streamlines.
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Figure 21. Sedimentation of 361 circular particles between two parallel walls, Re=1, k=0.025, t=2000 s, stream-
lines.
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